Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses.
نویسندگان
چکیده
The fate of retinal ganglion cells after optic nerve injury has been thoroughly described in rat, but not in mice, despite the fact that this species is amply used as a model to study different experimental paradigms that affect retinal ganglion cell population. Here we have analyzed, quantitatively and topographically, the course of mice retinal ganglion cells loss induced by intraorbital nerve transection. To do this, we have doubly identified retinal ganglion cells in all retinas by tracing them from their main retinorecipient area, the superior colliculi, and by their expression of BRN3A (product of Pou4f1 gene). In rat, this transcription factor is expressed by a majority of retinal ganglion cells; however in mice it is not known how many out of the whole population of these neurons express it. Thus, in this work we have assessed, as well, the total population of BRN3A positive retinal ganglion cells. These were automatically quantified in all whole-mounted retinas using a newly developed routine. In control retinas, traced-retinal ganglion cells were automatically quantified, using the previously reported method (Salinas-Navarro et al., 2009b). After optic nerve injury, though, traced-retinal ganglion cells had to be manually quantified by retinal sampling and their total population was afterwards inferred. In naïve whole-mounts, the mean (±standard deviation) total number of traced-retinal ganglion cells was 40,437(±3196) and of BRN3A positive ones was 34,697(±1821). Retinal ganglion cell loss was first significant for both markers 5 days post-axotomy and by day 21, the last time point analyzed, only 15% or 12% of traced or BRN3A positive retinal ganglion cells respectively, survived. Isodensity maps showed that, in control retinas, BRN3A and traced-retinal ganglion cells were distributed similarly, being densest in the dorsal retina along the naso-temporal axis. After axotomy the progressive loss of BRN3A positive retinal ganglion cells was diffuse and affected the entire retina. In conclusion, this is the first study assessing the values, in terms of total number and density, of the retinal ganglion cells surviving axotomy from 2 till 21 days post-lesion. Besides, we have demonstrated that BRN3A is expressed by 85.6% of the total retinal ganglion cell population, and because BRN3A positive retinal ganglion cells show the same spatial distribution and temporal course of degeneration than traced ones, BRN3A is a reliable marker to identify, quantify and assess, ex-vivo, retinal ganglion cell loss in this species.
منابع مشابه
Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters
Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with...
متن کاملProliferation and expression of progenitor and mature retinal phenotypes in the adult mammalian ciliary body after retinal ganglion cell injury.
PURPOSE Despite the identification of a small population of cells residing in the ciliary body (CB) of the adult mammalian eye that have the capacity to generate retina-like cells in vitro, their activity in vivo remains quiescent. The authors sought to identify whether the predictable and time-dependent death of retinal ganglion cells (RGCs) results in activation of progenitor-like cells withi...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملTrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo.
Injury-induced downregulation of neurotrophin receptors may limit the response of neurons to trophic factors, compromising their ability to survive. We tested this hypothesis in a model of CNS injury: retinal ganglion cell (RGC) death after transection of the adult rat optic nerve. TrkB mRNA rapidly decreased in axotomized RGCs to approximately 50% of the level in intact retinas. TrkB gene tran...
متن کاملTemporal Correlation Of Bax Expression And Axotomy-Induced Motoneuronal Apoptosis In Adult Rats: A Morphometric, Ultrastructural And Immunohistochemical Study
Background and Objective: As apoptotic cell death is extremely involved in physiological development and many pathological situations such as cancer and neurodegenerative diseases, the understanding of its molecular machinery can be useful in designing new therapeutic strategies. The present study investigated the temporal expression of the proapoptotic protein Bax in adult spinal motoneuron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental eye research
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2011